Mining action rules from scratch

نویسندگان

  • Zengyou He
  • Xiaofei Xu
  • Shengchun Deng
  • Ronghua Ma
چکیده

Action rules provide hints to a business user what actions (i.e., changes within some values of flexible attributes) should be taken to improve the profitability of customers. That is, taking some actions to re-classify some customers from less desired decision class to the more desired one. However, in previous work, each action rule was constructed from two rules, extracted earlier, defining different profitability classes. In this paper, we make a first step towards formally introducing the problem of mining action rules from scratch and present formal definitions. In contrast to previous work, our formulation provides guarantee on verifying completeness and correctness of discovered action rules. In addition to formulating the problem from an inductive learning viewpoint, we provide theoretical analysis on the complexities of the problem and its variations. Furthermore, we present efficient algorithms for mining action rules from scratch. In an experimental study we demonstrate the usefulness of our techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Incremental Approach to Association Rules Mining in Inductive Databases

Constraints-based mining languages are widely exploited to enhance the KDD process. In this paper we propose a novel incremental approach to extract itemsets and association rules from large databases. Here incremental is used to emphasize that the mining engine does not start from scratch. Instead, it exploits the result set of previously executed queries in order to simplify the mining proces...

متن کامل

Life-Cycle Support for Staff Assignment Rules in Process-Aware Information Systems

Process mining has been proposed as a tool for analyzing business processes based on events logs. Today, most information systems are logging events in some log and thus provide detailed information about the processes they are supporting. This information can be used for two forms of process mining: conformance checking (comparing the actual process with some a-priori model) and discovery (der...

متن کامل

Incremental Mining of Ontological Association Rules in Evolving Environments

The process of knowledge discovery from databases is a knowledge intensive, highly user-oriented practice, thus has recently heralded the development of ontology-incorporated data mining techniques. In our previous work, we have considered the problem of mining association rules with ontological information (called ontological association rules) and devised two efficient algorithms, called AROC...

متن کامل

Incremental association rule mining: a survey

Association rule mining is a computationally expensive task. Despite the huge processing cost, it is getting tremendous popularity due to the usefulness of the association rules. Several efficient algorithms can be found in the literature that cope with this popular task. This paper provides a comprehensive survey on the state-of-art algorithms for association rule mining, specially when the da...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2005